Nanotechnology refers to the manipulation of substances on the atomic and molecular level. Liposomes are small encapsulating bubbles that are microscopic in size, made of materials called phospholipids that mimic human cells, and have the property of being both attracted and repelled by water. Liposomal formulation includes the process that forms those bubbles, as well the encapsulation and delivery of the drugs contained within.
The significance of these very small vesicular forms that are able to enclose molecules soluble in water became apparent soon after being introduced during the 1960s. Pharmacists and research scientists became keenly aware of their potential to improve methods of drug delivery when fighting cancer and other serious illness. They encourage more accurate targeting of malicious cells while avoiding issues that plague other forms of administration.
The concept they use is radically different because it does not depend of standard modes of absorption typical of IV or oral administration. Conventional chemical processes can make management of specialized drugs more difficult. They are indiscriminate in their toxicity, and affect healthy organs as well, resulting in unnecessary damage and more lengthy recovery. When delivered via liposomes, release of toxic medication can be better controlled.
The drug molecules encased within each structure are suspended in water and surrounded by an artificially or naturally created membrane. The formulation of designed liposomes turns them into ideal mechanisms for hydrophilic drugs, or those that are attracted to and become suspended in water. When prepared according to current methods, the structures exist in two primary types, unilammelar or multilammelar. There are subcategories that include different sizes.
Individual liposomes surround the drug molecules with a membrane, and then transfer those medications to other cells when activated. Molecules can be released into the body by fusing certain layers with other physical cells, effectively delivering a small amount of medication. Others strategies rely on chemical reactions that encourage diffusion on a molecular level. The net result is a steadier, more controlled release.
This process is not only more effectively managed, but is also bio-compatible with human cells, and leaves no additional toxic residue. Some recently developed types of these capsules can be activated using ultrasound, which increases their efficacy in the locations where they are most needed. Others are dispensed via the respiratory system, and are directly deposited into the lungs and then slowly released, reducing overall toxicity.
It is still costly to manufacture these microscopic capsules for medical use. As continuing research produces a growing number of uses for this kind of nanotechnology, the overall expense will decline, but will not become cheap. Because this is relatively new technology in many ways, there are issues that still must be resolved. Some types of structures have experienced cellular leaking, and others have been affected by oxidation.
Like many medical innovations, liposomes are increasingly being used commercially. They are being called a better way to deliver vitamin, herbal and mineral supplements, and there are popular recipes for the personal creation of dietary supplements. While these uses produce their own controversies, the continued development of better medication delivery systems gives additional hope for advanced treatments.
The significance of these very small vesicular forms that are able to enclose molecules soluble in water became apparent soon after being introduced during the 1960s. Pharmacists and research scientists became keenly aware of their potential to improve methods of drug delivery when fighting cancer and other serious illness. They encourage more accurate targeting of malicious cells while avoiding issues that plague other forms of administration.
The concept they use is radically different because it does not depend of standard modes of absorption typical of IV or oral administration. Conventional chemical processes can make management of specialized drugs more difficult. They are indiscriminate in their toxicity, and affect healthy organs as well, resulting in unnecessary damage and more lengthy recovery. When delivered via liposomes, release of toxic medication can be better controlled.
The drug molecules encased within each structure are suspended in water and surrounded by an artificially or naturally created membrane. The formulation of designed liposomes turns them into ideal mechanisms for hydrophilic drugs, or those that are attracted to and become suspended in water. When prepared according to current methods, the structures exist in two primary types, unilammelar or multilammelar. There are subcategories that include different sizes.
Individual liposomes surround the drug molecules with a membrane, and then transfer those medications to other cells when activated. Molecules can be released into the body by fusing certain layers with other physical cells, effectively delivering a small amount of medication. Others strategies rely on chemical reactions that encourage diffusion on a molecular level. The net result is a steadier, more controlled release.
This process is not only more effectively managed, but is also bio-compatible with human cells, and leaves no additional toxic residue. Some recently developed types of these capsules can be activated using ultrasound, which increases their efficacy in the locations where they are most needed. Others are dispensed via the respiratory system, and are directly deposited into the lungs and then slowly released, reducing overall toxicity.
It is still costly to manufacture these microscopic capsules for medical use. As continuing research produces a growing number of uses for this kind of nanotechnology, the overall expense will decline, but will not become cheap. Because this is relatively new technology in many ways, there are issues that still must be resolved. Some types of structures have experienced cellular leaking, and others have been affected by oxidation.
Like many medical innovations, liposomes are increasingly being used commercially. They are being called a better way to deliver vitamin, herbal and mineral supplements, and there are popular recipes for the personal creation of dietary supplements. While these uses produce their own controversies, the continued development of better medication delivery systems gives additional hope for advanced treatments.
Aucun commentaire:
Enregistrer un commentaire